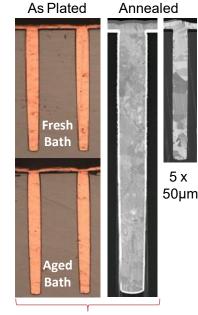

Key Enabling Materials for 3D-IC Fabrication and Device Performance

Hua Dong¹, Mike Gallagher¹, Ed Anzures¹, Robert Auger³, Rosemary Bell¹, Paul, Berry¹, Michelle Ho³, Joe Lachowski¹, Yil-Hak Lee⁴, Masaki Kondo⁵, Julia Kozhukh², Paul Morganelli¹, Janet Okada¹, Ravi Pokhrel¹, Jonathan Prange¹ and Matthew VanHanehem²

DuPont Electronics and Imaging – Semiconductor ¹Marlborough MA, ²Wilmington DE, ³Hsinchu, TW, ⁴Cheonan, KR and ⁵Sasakami, JP

< DUPONT >

Global Market Trend for Devices and Packaging

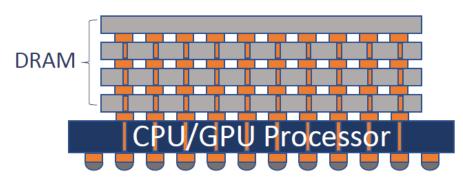

Key Challenges to Enabling 3D-IC and Hybrid Bonding

TSV formation (Via Middle)

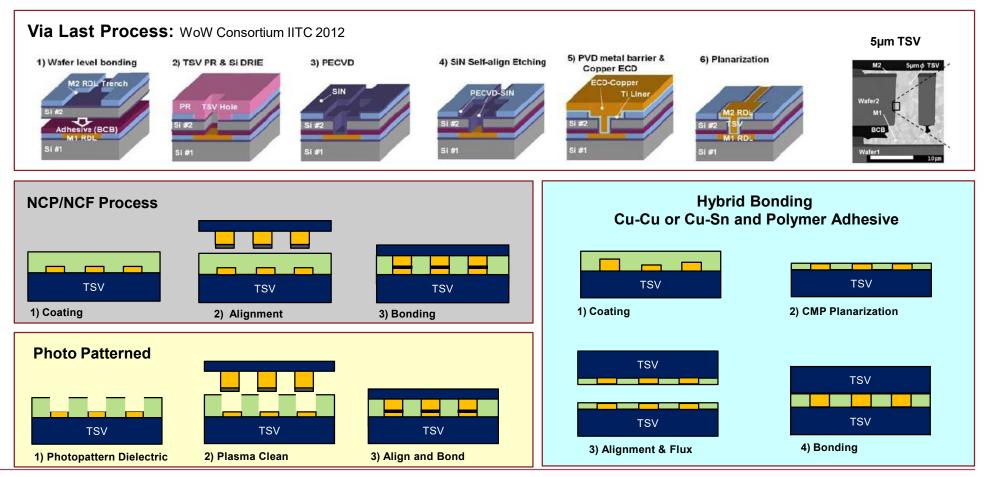
- Photoresists with good resolution and superior etch selectivity
- o Cu plating with fast plating rate, minimal overburden, and long bathlife
- Copper pillar and RDL plating
 - o Chemical stability of photoresists to plating baths and pattern resolution,
 - EP Cu pillar with copper purity, crystallite size and grain orientation

Polymer adhesive layer

- Planar coating and polymer reflow over topography
- Rheology modified after soft cure: non-tacky at RT for CMP and good flow at bonding temperature
- Controlled removal rate of both polymer and copper
- Hybrid Bonding process
 - Low temperature for Cu-Cu joining and polymerbonding
 - No reaction of polymer with gas phase (formic acid) and liquid no residue fluxing agents
 - Use conventional Flip Chip bonding processes


10 x 100µm

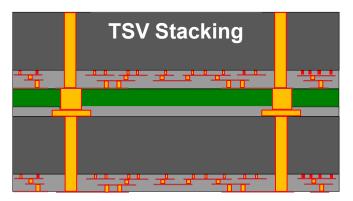
Achieving Reliable 3D-IC and Cu-Cu Hybrid Bonding


- Micro Electro-Mechanical & Micro Optical devices are currently the two most important applications driving permanent bonding applications.
- 3D-IC will be the driver for market growth in permanent bonding as designers continues to shrink devices to improve performance.
- 3D-IC Bonding Requirements
 - o Controlled Rheology and Thermal Stability
 - Alignment Accuracy and ToolThroughput
 - Planar Surfaces and Copper-Copper Bonding
 - High Yield / Lower CoO
- Bonding Approaches
 - Anodic / Si Direct / Eutectic / Adhesive /Hybrid
- Adhesive Bonding Advantages
 - Low Bonding Temperature / High Bond Strength
 - o CMP Planarization / Adhesive Reflow / Lower CoO

3D-IC Structure

Proposed Integration Schemes for C2C / C2W / W2W Bonding

iMAPS New England 46th Symposium & Expo, May 7, 2019

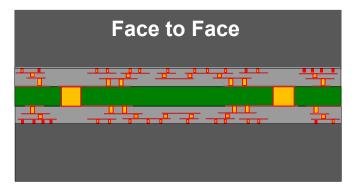

MAPS

DuPont Electronics & Imaging 5

DuPont E&I Materials that Enable 3D-IC and Hybrid Bonding

CMP Consumables

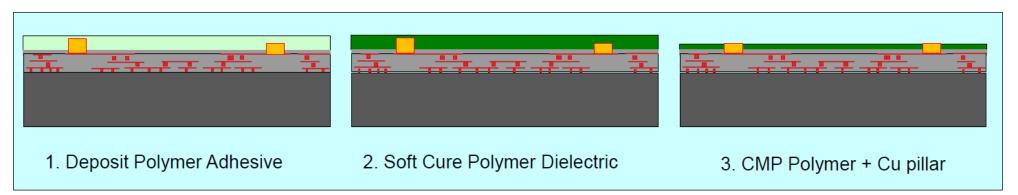
- CMP Pads
- Copper Selective Slurries
- Dielectric Slurries
- CMP Cleaning Solutions

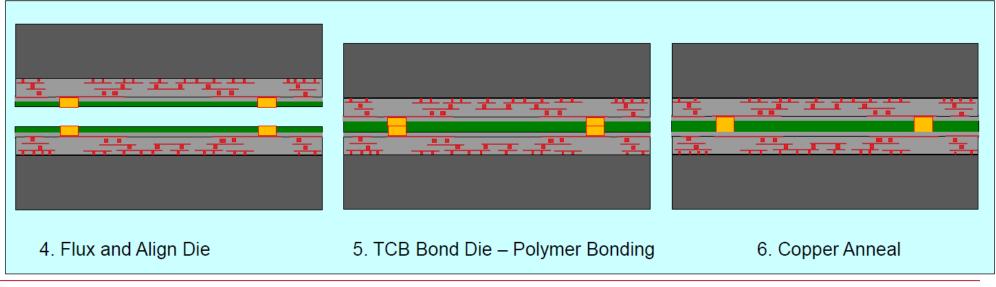


Plating Photoresists

- Spin-on Photoresists
- Dry Film Photoresists
- Chem Amp i-Line

Copper Plating

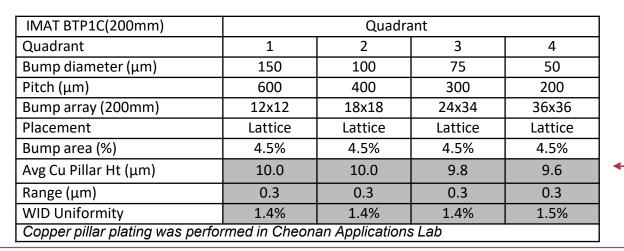

- Cu TSV Plating
- Cu RDL and Pillar Plating
- Sn/Ag, Pure Sn and In Plating
- ENIG and EP Ni Barrier

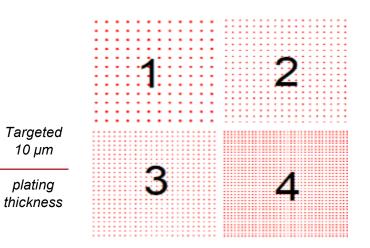


Dielectric Materials

- · Polymer Adhesives
- Spin-on Photodielectric
- Dry Film Photodielectrics
- Adhesion Promoters

3D-IC Hybrid Bonding – Integration Process Flow

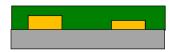




Uniformity Critical for Hybrid Bonding

- Very good WID uniformity for pillar height is obtained for each die type with range of 0.3µm or 1.4% total height.
- While range in pillar height was quite low, it is still too large for successful Cu-Cujoining
- CMP is required to achieve the desired height variance for Cu-Cu joining and polymer bonding

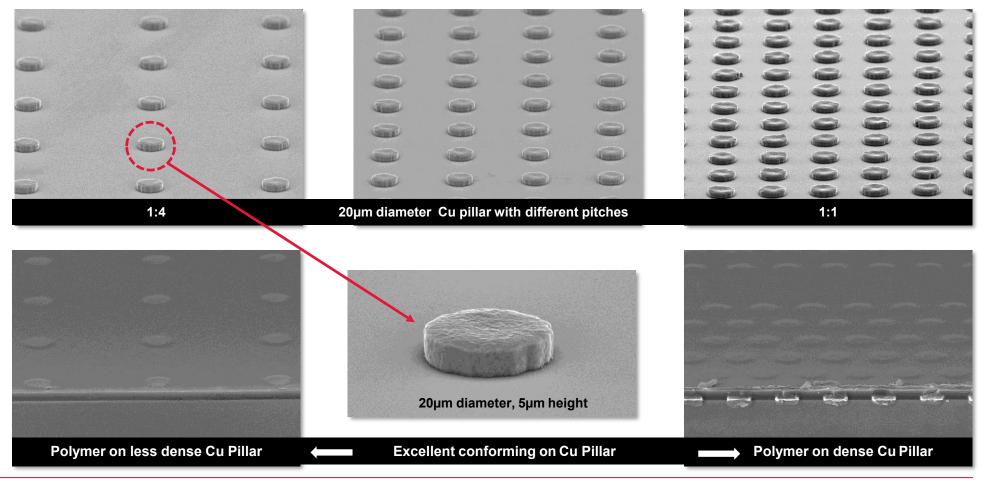
CMP



8

Critical Properties for Polymer Dielectrics

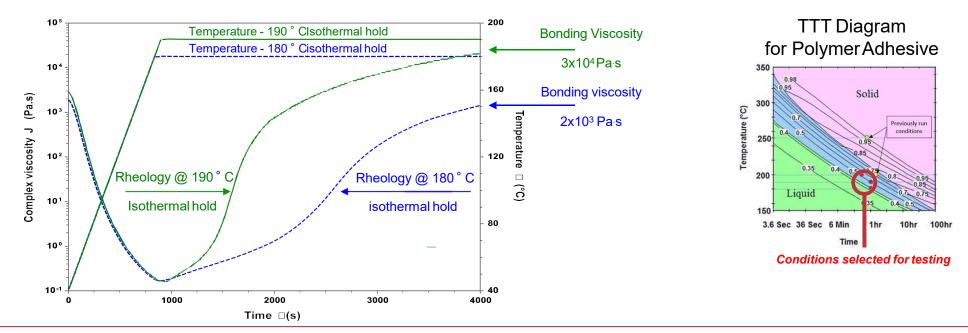
- Good planarization and reflow for coating
- Controllable rheology for CMP using soft cure
- Thermal stability of 350°C stable to PE-CVD
- No outgassing during cure, <1%wt loss/hr at 300°C
- Low dielectric constant, 2.55, tan δ, 0.0014 @ 40GHz
- Low water uptake, <0.2% @ 20°C/85%RH
- Low Cu migration, <10⁸ ions/cm² @200°C
- Stable to gas phase (formic acid) fluxing
- Compatible with Au:Au and Cu:Cu fusion processes

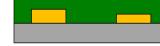


Copper Electromigration

D: LUAGT		Resistance ohm		
Biased HAST 13 0°C /85%RH	Bias V	Initial		After HAST
Polymer Dielectric	3	>1E+12		>1E+12
	5	>1E+12		>1E+12
	15	>1E+12		>1E+12

Planar Coating of Polymer Dielectric over Copper Pillars



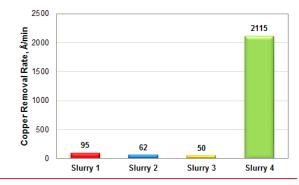


iMAPS New England 46th Symposium & Expo, May 7, 2019

Adjusting Hardness while Maintaining Flow Enables CMP

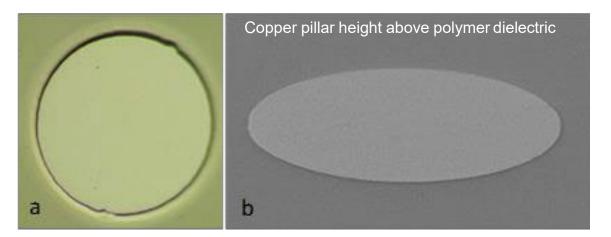
- Low viscosity polymer adhesive allows good coating uniformity and planarization over topography
- Soft curing (B-staging) polymer adhesive increases the modulus and hardness at RT to allow CMP
- Partial cured polymer dielectric has viscosity at bonding of 10³ 10⁵ Pas

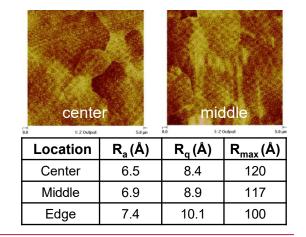
Removal Rate of Polymer Dielectric Controlled by Soft Cure


– 1 <i>.</i> .	Material Removal Rate, Å/min				
Formulation		Copper			
Soft Cure Condition	180°C/60min	190°C/60min	200°C/45min	_	
Degree of Cure	45%	50%	55%		
Viscosity at Temperature	2x10 ³ @ 180°C	3x10₄@ 190°C	>105@ 200°C		
Slurry 1	97580	6788	335	95	
Slurry 2	2575	1	1	62	
Slurry 3	5166	1283	192	50	
Cu Slurry 4	637	72	45	2115	

Strasbaugh 6EC 200 mm R&D polisher; IC1010[™] pad; 2 psi; 93/87 rpm table/carrier speeds; 200 mL/min slurry flow; Saesol 8031C1 disk, 7 lbf

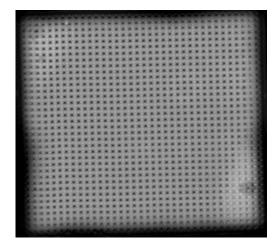
• Removal rate is controlled by both CMP processing conditions and soft cure temperature




Non-selective copper and polymer removal process is under development

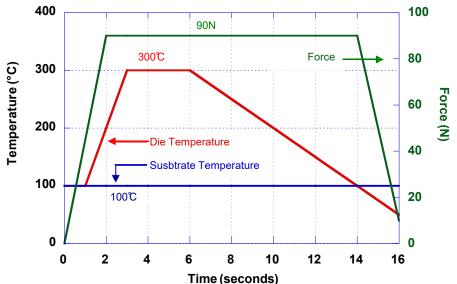
Optimization of CMP Required for 3D-IC Hybrid Bonding

- Process adjustments and slurry design facilitated controlled polymer dielectric and copper removal on blanket films and in copper pillar/polymer structured wafers
- Excellent uniformity across the wafer and across copper pillars can be achieved
- Due to thermal expansion mismatch between Cu and polymer, Cu pillar is left exposed by ~10-20 nm
- A strong collaboration between CMP and APT businesses enabled material, formulation and process tuning to achieve topography control of patterned copper pillar/polymer structures



Bring die in contact Cu-Cu only 90N force @ 100°C

Ramp top die from $100^{\circ}C \rightarrow 300^{\circ}C$ 90N in 2 sec


Typical TCB Process: Toray FC3000S

- Hold top die at 300°C / 90N for 4 sec
- Cool top die to 100°C / 10N
- Release bond head

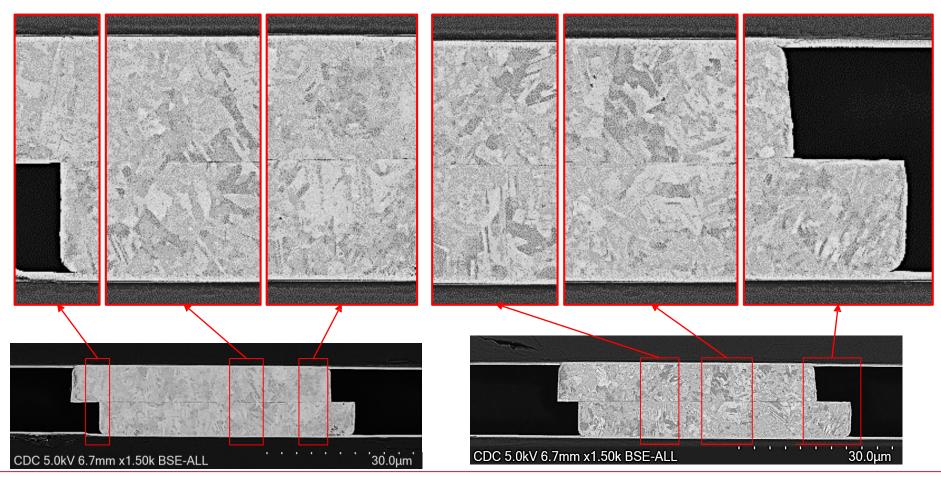
Good Cu-Cu joining (dark areas) No voiding seen in the field area

CSAM - 100 MHz transducer

TCB Bonding Process Used to Achieve Cu-Cu Joining

Cu-Cu Joining and Polymer Bonding Results

Join/Bond processing improvements


- Cu-Cu Joining observed and good Polymer Dielectric bonding with no voiding
- Gas phase fluxing will remove copper oxide without impacting polymer bonding
- TCB process optimization will focus on temperature and pressure profile

Achieving Copper-Copper Joining and Polymer Bonding

iMAPS New England 46th Symposium & Expo, May 7, 2019

MAPS

DuPont Electronics & Imaging

Summary of Current Work

- Copper pillar plating delivers pillar of uniform height with high purity and small crystallite size
- Polymer dielectrics provide planar coatings and the controllable rheology for both CMP and bonding
- CMP slurry selection and process variables allow planarization of both Cu and polymer dielectric
- ✓ Cu-Cu joining demonstrated using a TCB bond tool using 90N of force and <4 sec bond time
- ✓ Low temperature bonding conditions were used, 300°C on the top die and 100°C on the bottom die

- Successful hybrid bonding results were demonstrated using polymer resin, copper grain structure and selective CMP processes developed across **DuPont Electronics & Imaging** business portfolio.
- This will enable broader and faster adoption of 3D-IC technology

Plating Cu with Higher Diffusion for Low Temp. Joining

• Lower temperature processing required for DRAM and advanced node devices to minimize damage

Cu (100)

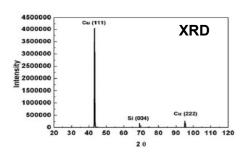
2.15 x 10⁻¹⁰

1.19 x 10⁻⁹

4.74 x 10⁻⁹

1.48 x 10⁻⁸

- Surface diffusion of Cu ions across bonding interface is essential for reliable join
- Copper (111) can be plated with commercial EP Cu chemistry
- Different orientations of Cu provide widely different Cu diffusion rates:
- Cu (111) also has lowest Cu oxidation rate of all planes


Cu (111)

6.85 x 10⁻⁶

9.42 x 10⁻⁶

1.22 x 10⁻⁵

FIB-SEM	<u>10 µm</u>

300°C	1.51 x 10⁻⁵	
Liu et. al., Scientific Reports, 20	15	

Temperature

150°C

200°C

250°C

Surface Diffusivity, D (cm²/sec)

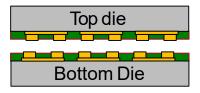
Cu (110)

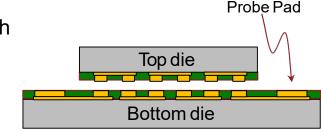
6.61 x 10⁻¹²

5.98 x 10⁻¹¹

3.56 x 10⁻¹⁰

1.55 x 10-9


MAPS



Next Steps for 3D-IC Cu-Cu Joining and Polymer Bonding

- Copper pillar structures featuring sub 20 micron pillars at 1:1 pitch
 - Segment plate copper pillars, e.g. Cu(111)
 - o Coat polymer adhesives, e.g. low temp cure
 - CMP segments using different process conditions
 - Dice segments and TCB bond
 - Reliability testing and failure analysis

- Via chain structure featuring sub 20 micron pillars and pads at 1:1 pitch
 - Repeat DOE with electrically testable segments
 - Validate bonding based on resistance measurement
 - Reliability testing and failure analysis

Е

Thank You

